2,721 research outputs found

    Spatiotemporal complexity of the universe at subhorizon scales

    Full text link
    This is a short note on the spatiotemporal complexity of the dynamical state(s) of the universe at subhorizon scales (up to 300 Mpc). There are reasons, based mainly on infrared radiative divergences, to believe that one can encounter a flicker noise in the time domain, while in the space domain, the scaling laws are reflected in the (multi)fractal distribution of galaxies and their clusters. There exist recent suggestions on a unifying treatment of these two aspects within the concept of spatiotemporal complexity of dynamical systems driven out of equilibrium. Spatiotemporal complexity of the subhorizon dynamical state(s) of the universe is a conceptually nice idea and may lead to progress in our understanding of the material structures at large scalesComment: references update

    Ergodicity, Decisions, and Partial Information

    Full text link
    In the simplest sequential decision problem for an ergodic stochastic process X, at each time n a decision u_n is made as a function of past observations X_0,...,X_{n-1}, and a loss l(u_n,X_n) is incurred. In this setting, it is known that one may choose (under a mild integrability assumption) a decision strategy whose pathwise time-average loss is asymptotically smaller than that of any other strategy. The corresponding problem in the case of partial information proves to be much more delicate, however: if the process X is not observable, but decisions must be based on the observation of a different process Y, the existence of pathwise optimal strategies is not guaranteed. The aim of this paper is to exhibit connections between pathwise optimal strategies and notions from ergodic theory. The sequential decision problem is developed in the general setting of an ergodic dynamical system (\Omega,B,P,T) with partial information Y\subseteq B. The existence of pathwise optimal strategies grounded in two basic properties: the conditional ergodic theory of the dynamical system, and the complexity of the loss function. When the loss function is not too complex, a general sufficient condition for the existence of pathwise optimal strategies is that the dynamical system is a conditional K-automorphism relative to the past observations \bigvee_n T^n Y. If the conditional ergodicity assumption is strengthened, the complexity assumption can be weakened. Several examples demonstrate the interplay between complexity and ergodicity, which does not arise in the case of full information. Our results also yield a decision-theoretic characterization of weak mixing in ergodic theory, and establish pathwise optimality of ergodic nonlinear filters.Comment: 45 page

    On the exchange of intersection and supremum of sigma-fields in filtering theory

    Full text link
    We construct a stationary Markov process with trivial tail sigma-field and a nondegenerate observation process such that the corresponding nonlinear filtering process is not uniquely ergodic. This settles in the negative a conjecture of the author in the ergodic theory of nonlinear filters arising from an erroneous proof in the classic paper of H. Kunita (1971), wherein an exchange of intersection and supremum of sigma-fields is taken for granted.Comment: 20 page

    Langevin Thermostat for Rigid Body Dynamics

    Full text link
    We present a new method for isothermal rigid body simulations using the quaternion representation and Langevin dynamics. It can be combined with the traditional Langevin or gradient (Brownian) dynamics for the translational degrees of freedom to correctly sample the NVT distribution in a simulation of rigid molecules. We propose simple, quasi-symplectic second-order numerical integrators and test their performance on the TIP4P model of water. We also investigate the optimal choice of thermostat parameters.Comment: 15 pages, 13 figures, 1 tabl

    Sound Transformation: Applying Image Neural Style Transfer Networks to Audio Spectrograms

    Get PDF
    Image style transfer networks are used to blend images, producing images that are a mix of source images. The process is based on controlled extraction of style and content aspects of images, using pre-trained Convolutional Neural Networks (CNNs). Our interest lies in adopting these image style transfer networks for the purpose of transforming sounds. Audio signals can be presented as grey-scale images of audio spectrograms. The purpose of our work is to investigate whether audio spectrogram inputs can be used with image neural transfer networks to produce new sounds. Using musical instrument sounds as source sounds, we apply and compare three existing image neural style transfer networks for the task of sound mixing. Our evaluation shows that all three networks are successful in producing consistent, new sounds based on the two source sounds. We use classification models to demonstrate that the new audio signals are consistent and distinguishable from the source instrument sounds. We further apply t-SNE cluster visualisation to visualise the feature maps of the new sounds and original source sounds, confirming that they form different sound groups from the source sounds. Our work paves the way to using CNNs for creative and targeted production of new sounds from source sounds, with specified source qualities, including pitch and timbre

    UV radiation, vitamin D, and multiple sclerosis

    Full text link

    Smartphone placement within vehicles

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordSmartphone-based driver monitoring is quickly gaining ground as a feasible alternative to competing in-vehicle and aftermarket solutions. Currently the main challenges for data analysts studying smartphone-based driving data stem from the mobility of the smartphone. In this paper, we use kernel-based k-means clustering to infer the placement of smartphones within vehicles. The trip segments are mapped into fifteen different placement clusters. As a part of the presented framework, we discuss practical considerations concerning e.g., trip segmentation, cluster initialization, and parameter selection. The proposed method is evaluated on more than 10 000 kilometers of driving data collected from approximately 200 drivers. To validate the interpretation of the clusters, we compare the data associated with different clusters and relate the results to real-world knowledge of driving behavior. The clusters associated with the label “Held by hand” are shown to display high gyroscope variances, low maximum speeds, low correlations between the measurements from smartphone-embedded and vehicle-fixed accelerometers, and short segment durations

    Sliding mode control of quantum systems

    Full text link
    This paper proposes a new robust control method for quantum systems with uncertainties involving sliding mode control (SMC). Sliding mode control is a widely used approach in classical control theory and industrial applications. We show that SMC is also a useful method for robust control of quantum systems. In this paper, we define two specific classes of sliding modes (i.e., eigenstates and state subspaces) and propose two novel methods combining unitary control and periodic projective measurements for the design of quantum sliding mode control systems. Two examples including a two-level system and a three-level system are presented to demonstrate the proposed SMC method. One of main features of the proposed method is that the designed control laws can guarantee desired control performance in the presence of uncertainties in the system Hamiltonian. This sliding mode control approach provides a useful control theoretic tool for robust quantum information processing with uncertainties.Comment: 18 pages, 4 figure
    corecore